Plantas:
Son los seres vivos fotosintéticos, sin capacidad locomotora y cuyas paredes celulares se componen principalmente de celulosa. Aunque hay muchísimas especies vegetales, el ser humano solo utiliza unas pocas, que le proporcionan alimento, madera, abrigo, perfumes, medicinas o materiales diversos.
1. Fabrican su propio alimento, (autótrofos) en la fotosíntesis, fabrican materia orgánica a partir de moléculas inorgánicas, utilizando la energía que proporciona del sol. Proporcionan alimento a los animales, pues estos no pueden producirlo por si mismos.
2. Producen oxígeno. Al realizar la fotosíntesis como producto secundario se libera oxígeno a la atmósfera El oxígeno es imprescindible para la respiración de los seres vivos.
3. Intervienen en la regulación del clima. Especialmente los bosques densos, retienen humedad y suavizan el clima. Y con el proceso de la fotosíntesis las plantas reducen el dióxido de carbono de la atmósfera y ayudan a reducir el efecto invernadero.
4. Ayudan en la formación y conservación del suelo. Las raíces disgregan las rocas y colaboran en la formación del suelo, además retienen el suelo y reducen la erosión por lluvia.
Estructura de las Plantas:
Plantas no Vasculares: Briofitos (Musgos). No tienen raíces, tallos ni hojas.
Plantas Vasculares: Tienen raíces, tallos y hojas
Estructura y Función de la Hoja:
Estructura de la hoja: La hoja es el órgano donde ocurre la mayor parte de la fotosíntesis. Es también el órgano por donde la planta pierde la mayor cantidad de agua. La estructura de la hoja está adaptada para estas dos funciones: la producción de alimento y el control de la pérdida de agua.
La capa superior de la hoja se llama epidermis superior. La capa de abajo se llama la epidermis inferior. Las capas epidérmicas ayudan a controlar la pérdida de agua. En la epidermis hay unas estructuras llamadas estomas. Los estomas son aberturas en la epidermis de la hoja a través de las cuales el oxígeno y el vapor de agua salen de la hoja y entra el bióxido de carbono.
Entre las dos capas epidérmicas se encuentra el mesófilo. Entre las células de parénquima hay una red de espacios de aire que se conectan con los estomas. En esta forma, el bióxido de carbono que pasa hacia los estomas entra en la red de espacios intercelulares que están entre las células parenquimatosas del mesófilo. El mesófilo se compone de dos tipos de células parenquimatosas: (1) el mesófilo de empalizada y (2) el mesófilo esponjoso. El mesófilo de empalizada es una capa de células de parénquima, rectangulares, alargadas en un ángulo recto con la superficie de la hoja ubicada cerca de la parte superior de la hoja. La mayor cantidad de fotosíntesis ocurre en el mesófilo de empalizada.
El mesófilo esponjoso es una capa de células de parénquima de forma irregular que rodea los espacios intercelulares en el mesófilo.
El alimento que se forma en el mesófilo se mueve hacia el floema de la hoja. De aquí, el alimento es transportado a todas las partes de la planta y se usa para el crecimiento y el desarrollo.
Función de la Hoja: Las hojas son apéndices caulinares de los tallos que tienen la función de realizar la fotosíntesis.
La función principal de las hojas es realizar la fotosíntesis en los cloroplastos de las células; debido a lo cual, los vegetales superiores son, junto a los otros organismos fotosintéticos, los productores primarios en la biosfera. Las hojas realizan el intercambio de gases (fotosíntesis y respiración) a través de sus estomas aeríferos, por los que además transpiran el vapor de agua (evapotranspiración).
A través de los estomas de las hojas, la planta toma el dióxido de carbono, CO2, de la atmósfera, y expulsa el O2 procedente de la fotólisis del H2O, proceso incluido en la fotosíntesis. Este oxígeno es fundamental para la vida en nuestro planeta.
Transporte de Agua y Nutrientes en las Plantas:
El transporte de agua y nutrientes está relacionado con diversos factores ambientales, como la composición del suelo, la pluviosidad, la luz, el calor solar y el aire.
Dependiendo del tipo de suelo (arenoso,humífero, arcilloso, calcáreo, limos0...), cuando llueve ocurre un proceso de lixiviación o arrastre de material del horizonte A al horizonte B, y el agua disuelve las moléculas de los compuestos químicos del suelo. El agua así enriquecida constituye el agua capilar que rodea a los pelos absorbentes de las raíces de las plantas. Por ósmosis, los pelos absorbentes toman el agua con las sales minerales disueltas (medio hipotónico), gracias a la luz solar, al CO2 atmosférico y a la clorofila, la savia bruta o no elaborada se transforma en savia elaborada, la cual es transportada por los tubos cribosos (floema) a todas las partes de la planta, para ser almacenada y así formar frutos, raíces y tallos. Estos procesos son más rápidos debido a la transpiración de la planta, que aporta humedad al ambiente. Por ende es necesario el sol en las plantas
Fotosíntesis:
Es la conversión de materia inorgánica en materia orgánica gracias a la energía que aporta la luz. En este proceso la energía lumínica se transforma en energía química estable, siendo el adenosín trisfosfato (ATP) la primera molécula en la que queda almacenada esta energía química.
Fases:
Fase Luminosa: se produce solo en presencia de luz, y se produce en las membranas de los tilacoides de los cloroplastos, lugar donde se localiza la clorofila. Se puede resumir en varios acontecimientos: 1.La energía de luz captada por la clorofila se utiliza para romper una molecula de H2O en un proceso llamado fotolisis del agua. 2.La rotura del agua libera O2 a la atm y electrones y H+ que se utilizan para reducir de NADP+ a NADPH. 3.Parte de la energía de la luz se emplea para sintetizar ATP a partir de ADP y Pi. - De esta forma, la energía luminosa se transforma en energía química: ATP y NADPH.
Fase Oscura: se localiza en el estroma del cloroplasto y no depende directamente de la luz. 1. Se produce a través de una ruta metabólica cíclica llamada Ciclo de Calvin. 2. Las moléculas de ATP y NADPH producidas en la fase luminosa se usan para recudir moléculas de CO2 a glucosa. 3. La glucosa formada es utilizada para la produccion de energía en la respiración celular, y como materia de partida para la sintesis de todos los compuestos organicos requeridos para la célula atótrofa (otros carbonohidratos, aminoácidos, lípidos, etc.), a traves de otras rutas metabólicas.
Etapas de la Respiración Celular:
Glucólisis: La glucosa se desglosa en el citoplasma de la célula durante la etapa de glucólisis. Dos grupos de fosfato se adjuntan a la molécula de glucosa y ésta se divide en dos compuestos idénticos. Un ion de hidrógeno con dos electrones se desprende de cada uno de estos compuestos y se adjunta a un dinucleótido de nicotinamida y adenina para formar el NADH. Dos átomos dehidrógeno extras se desprenden y se unen con el oxígeno para formar agua. El carbón compuesto remanente se desglosa en dos moléculas de piruvato. En esta etapa se adquieren dos moléculas de ATP.
Etapa de transición y el ciclo de Krebs: La etapa de transición se lleva a cabo en la mitocondrias. El piruvato se combina con el NAD+ para formar el NADH y moléculas de acetil coenzima A. El próximo paso es el ciclo de Krebs, también conocido como el ciclo de ácido cítrico. En éste ciclo, los átomos de hidrógeno se desprenden de las moléculas de acetil coenzima A para usar los electrones y poder crear ATP. Algunas veces, todo el remanente de las moléculas de acetil coenzima A es carbón, el cual se combina con el oxígeno para formar dióxido de carbono que es emitido como un desecho. El ciclo de Krebs crea cuatro moléculas de ATP.Cadena de transporte de electrones: El NADH que ha sido creado en las etapas de respiración celular anteriores libera los electrones a la cadena de transporte de electrones. Cada molécula consecutiva en la cadena tiene una atracción más fuerte al electrón, así que éste continúa a través de la cadena hasta que alcanza un átomo de oxígeno al final, donde se forma agua y es liberada. En el camino, libera energía que se usa para crear moléculas de ATP. La cadena de transporte de electrones crea 32 moléculas de ATP.
Importancias Biológica y Económica de las Plantas
Biológica: Son importantes ya que son primer eslabón de la cadena trófica,(sin plantas no habrían animales), también son captadores de CO2 y reservorio natural, reguladoras del ciclo del agua,fuente de materia orgánica del suelo, etc.... , recursos renovable, alimenticio,energético, etc
Económica: El valor económico de las plantas proviene de los productos que se extraen de ellas, como madera, materias primas, sustancias orgánicas y medicinales.